
Part 1 of 2:

Text

manipulation

with reg-ex,

sed and awk

SCRIPTING AND TEXT

MANIPULATION
DA N I E L J UM P E R & M I KE B E AUM I E R

 Broad and shallow

SCOPE OF TALK

7/25/2014 Computation Tutorial: Scripts and Text Part 1 2

Text Manipulation

Regular Expressions

 sed

awk

Scripts

Perl – Higher level; more structured programming

Bash – More simple, easy to use command line tools

OVERVIEW

Part 2
7/25/2014 Computation Tutorial: Scripts and Text Part 1 3

REGULAR

EXPRESSIONS

THE REGULAR EXPRESSION

 What is a Regular Expression?

 Basic definition: A set of characters that specify a pattern

 In practice: Powerful tool for searching/matching within strings

 What is it good for?

 Useful in context of other tools

 Code, scripts, commands, text editing, etc…

 Sophisticated find (and replace)

 Extract part of a string

 Work with strings with varying/unknown format or content

 Practice/References here:

 http://regexone.com/ - interactive regex tutor

 http://regexpal.com/ - test your regex against a sample string

 https://www.cs.tut.fi/~jkorpela/perl/regexp.html - quick reference

 http://www.grymoire.com/Unix/Regular.html – detailed guide

7/25/2014 Computation Tutorial: Scripts and Text Part 1 5

http://regexone.com/
http://regexone.com/
http://regexpal.com/
http://regexpal.com/
https://www.cs.tut.fi/~jkorpela/perl/regexp.html
https://www.cs.tut.fi/~jkorpela/perl/regexp.html
http://www.grymoire.com/Unix/Regular.html
http://www.grymoire.com/Unix/Regular.html

REGEX BASICS

There are two categories of special characters
used to build regular expressions, in
conjunction with literal-match characters

Meta Characters

 These characters define relationships between other
characters in a regular expression, as well as define how
many times a character or expression should be matched
before flagging a ‘successful regex match’

Special Characters

 These characters represent single characters of a certain
character class – such as white-space (tab, space or
newline), numeric characters, alphabetical characters,
uppercase characters and lowercase characters.

7/25/2014 Computation Tutorial: Scripts and Text Part 1 6

REGEX – SPECIAL CHARACTERS

Regex What It Matches

\t tab

\n newline

\r return (CR)

\xhh character with hex. code hh

\b “word” boundary

\B not a “word” boundary

\w
matches any single character classified as a “word”

character (alphanumeric or “_”)

\W matches any non-“word” character

\s
matches any whitespace character (space, tab,

newline)

\S matches any non-whitespace character

\d matches any digit character, equiv. to [0-9]

\D matches any non-digit character

7/25/2014 Computation Tutorial: Scripts and Text Part 1 7

REGEX – META CHARACTERS

Regex What It Means

^ beginning of string, or ‘not’ inside []

$ end of string

. any character except newline

* match 0 or more times

+ match 1 or more times

? match 0 or 1 times; or: shortest match

| alternative

() grouping; “storing”

[] set of characters

{ } repetition modifier

\ quote or special

7/25/2014 Computation Tutorial: Scripts and Text Part 1 8

REGEX – REPEATED CHARACTERS

a* zero or more a’s

a+ one or more a’s

a? zero or one a’s (i.e., optional a)

a{m} exactly m a’s

a{m,} at least m a’s

a{m,n} at least m but at most n a’s

7/25/2014 Computation Tutorial: Scripts and Text Part 1 9

PUTTING IT TOGETHER

“I played basketball from 14:00 to 27:00, and kept a log of it at

/direct/phenix+u/beaumim/BASKETBALL.txt”

Plug it in yourself to try it out at: http://regexpal.com/

Regular Expression What it Matches

[basketball]
Matches every letter in basketball, one letter at a time. Think of [] as a

wild-card character, where you define the ‘wild cards’ inside.

[^basketball]
Matches ever letter other than those in basketball, one letter at a time.

This is the exactly inverted match, as the above match.

basketball Matches every occurrence of basketball in all lowercase letters

[bB][aA][sS][kK][eE][tT][bB][aA][lL]{1,2} Matches any case permutation of the string "basketball"

\d{1,2}:\d{1,2}
Matches any time-stamp which contains two 1 or 2 digit numbers

separated with a colon.

/.*/ Matches any full unix-like directory.

7/25/2014 Computation Tutorial: Scripts and Text Part 1 10

http://regexpal.com/
http://regexpal.com/

 What is sed?

 A UNIX program (command) for modifying strings

 Primary use: string substitutions

 Great place for regular expressions!

 Syntax

 Note: sed syntax is the same as find/replace syntax in vi

 Applied to a file:

 $> sed ‘s/.../.../’ <oldfile >newfile

 Applied to a stream:

 $> echo “test string” | sed ‘s/.../.../’

 Detailed guide to sed:

 http://www.grymoire.com/unix/sed.html

SED – STREAM EDITOR

Find pattern Replace pattern

7/25/2014 Computation Tutorial: Scripts and Text Part 1 11

http://www.grymoire.com/unix/sed.html

SED: BASIC EXAMPLES

$> echo "test input" | sed 's/input/output/‘

test output

$> echo "test input" | sed 's/in/out/'

test output

$> echo "test input" | sed 's/[ni]\{1,\}/out/'

test output

$> echo "test input" | sed 's/test input/"&"/'

"test input"

$> echo "test input" | sed 's/\(test\) \(input\)/"\2" "\1"/'

"input" "test"

$> echo "test input" | sed 's/\([^]*\) \([a-z]*\)/"\2" "\1"/'

"input" "test“

Any character matching ‘n’ or ‘i’

1 or more instances of the previous pattern

Any not ‘ ‘ (space) character, zero or more

Any lower case letter character, zero or more

& = all text matching pattern

7/25/2014 Computation Tutorial: Scripts and Text Part 1 12

SED: ADVANCED EXAMPLE

readtree.C:

tree->SetBranchAddress("var1",&fill_var1);

tree->SetBranchAddress("var2",&fill_var2);

tree->SetBranchAddress("var3",&fill_var3);

tree->SetBranchAddress("var4",&fill_var4);

tree->SetBranchAddress("var5",&fill_var5);

$> sed 's/tree->SetBranchAddress("\([^"]*\)",&\([^)]*\)/

tree->Branch("\1",\&\2,"\1\/F"/' <readtree.C >createtree.C

createtree.C:

tree->Branch("var1",&fill_var1,"var1/F");

tree->Branch("var2",&fill_var2,"var2/F");

tree->Branch("var3",&fill_var3,"var3/F");

tree->Branch("var4",&fill_var4,"var4/F");

tree->Branch("var5",&fill_var5,"var5/F");

7/25/2014 Computation Tutorial: Scripts and Text Part 1 13

 What is awk?

 A versatile UNIX program (command) and scripting environment

focused around processing string inputs

 C style interpreter

 Great for processing strings in “column” form

 Syntax

 ... | awk '{command1;command2;...;commandN}'

AWK

 Possible commands:

 if (conditional) statement [else statement]

 while (conditional) statement

 for (expression ; conditional ; expression) statement

 for (variable in array) statement

 variable=expression

 print expression

 printf

 Built in variables:

 $0 – input line string

 $1 – first ‘column’ of input string

 $n – n’th ‘column’ of input string

 FS – field separator character

 awk –F: ‘{…}’ uses

 NF – number of input ‘columns’

 NR – current number of lines of
input

7/25/2014 Computation Tutorial: Scripts and Text Part 1 14

$> ls -l | awk '{print "File "$9" is owned by "$3"a is "$5}'

File Desktop is owned by danielj and is 2.0K

File README.txt is owned by danielj and is 120

File core.2316 is owned by danielj and is 61M

$> ls –l | awk '{if($5>1000) print $9}'

Desktop

core.2316

$> hostname | awk '{if ($0 ~ /phenix.bnl/) print "1"; else if ($0

~ /rcf.bnl/) print "2"; else print "3"}‘

 Returns 1 on a phenix machine, 2 on an rcf machine, and 3 otherwise

 Useful for scripts: eg. Tell a script to give an error message if the above output = 1||3

if you only intend to run it on an rcf machine

 A Detai led awk guide: http://www.grymoire.com/Unix/Awk.html

AWK: EXAMPLES

7/25/2014 Computation Tutorial: Scripts and Text Part 1 15

http://www.grymoire.com/Unix/Awk.html

Tune in next week for part 2: scripting

See further examples of text manipulation in action!

END

7/25/2014 Computation Tutorial: Scripts and Text Part 1 16

